n^2+n-1640=0

Simple and best practice solution for n^2+n-1640=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2+n-1640=0 equation:



n^2+n-1640=0
a = 1; b = 1; c = -1640;
Δ = b2-4ac
Δ = 12-4·1·(-1640)
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6561}=81$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-81}{2*1}=\frac{-82}{2} =-41 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+81}{2*1}=\frac{80}{2} =40 $

See similar equations:

| 10=4+3(s+2) | | x3=10.9 | | F(x)=11x5 | | 100(10-p)=75(p-3) | | g(-3)=1/3-4/3(3)=1/3-4=-32/3 | | 4-2(z-4)/3=1/2(2z+5)/2 | | (2x)x(3x)=100 | | (2x)×(3x)=100 | | 100(10-x)=75(x-3) | | 7x–3(x+6)=–2 | | 7x–3(x+6)=-2 | | 2xx3x=100 | | 33+3z=6z | | a 12=5 6 | | x/(169+x)=0.37 | | (2•x+1)•(2•x+2)•(2•x+3)=720 | | ×+.05x=16.75 | | (x/169+x)=0.37 | | 6a+7÷3a+2=5÷3 | | (5x12)/3)/3)=+30-50 | | (2x+4)(2x+3)=56 | | 1.06−t=0.9 | | 28=4+3(u+5) | | 247=3(n-5) | | n2= 19 | | 4+3(u+5)=28 | | x−2.07=1.35 | | 8(2+3x)+1=-10(x+1) | | 0.14+x=1.09 | | 6n²+12n=0 | | 5.3+y=7.05 | | 2(3x-6)/(x-1)(x+1)+1/x+1= |

Equations solver categories